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Abstract. A class of singular integral equations arising from the inverse scattering problem 
has been investigated. In 8 2, the exact solution of the dominant equations was sought, 
which serves as the first approximation for the solution of the complete integral equation. In 
5 3, the asymptotic expansions for the phase angles appearingin the solution were derived in 
order to reduce the computing time for the solution. Two examples were given to illustrate 
the accuracy of approximations. In 8 4, the method of successive approximations was used 
to solve the complete integral equation, and convergence of the sequence was discussed. 

1. Introduction 

The purpose of this paper is to investigate the solution for a class of singular integral 
equations of the form 

q5 ( x )  + O0 e-'""+"A(x, s)q5 (s) ds = f ( x )  (1.1) 
--aD 

where the independent variables x and s are real. In equation (l.l), the kernel is 
symmetric with 

Nx, 3) = S+(x + s) + g(x, s), 

where the Heisenberg delta function is defined as 

1 1 
S + ( x )  = - lim -, 

27T e-0  E -1x 

and g(x,  s) is a complex function, regular and independent of b( e ) ,  with the properties: 

(a) symmetric in x and s; 
(b) vanishing as either 1x1 or Is1 approaches infinity. 

The absolute term is a complex function quadratically summable. 
Equation (1.1) arises from the study of the inverse scattering problem. In an 

attempt to solve the Gel'fand-Levitan equation (Gel'fand and Levitan 1955), Shih 
(1 976) introduced two families of eigenfunctions corresponding to continuous and 
discrete spectra, and transformed the Gel'fand-Levitan equation into a system of N +  1 
equations. It was shown that the problem of solving this system can be reduced to that 
of solving (1.1). 

7 



8 L YShih 

Equation (1.1) indicates that the solution of 4 ( x )  depends upon the form of the 

( a )  they are Holder continuous; 
(b )  b ( - x )  = b*(x )  and I $ ( - x )  = 4*(x) by analytic continuation, where the asterisk 

indicates the complex conjugate; 

(d )  they vanish at infinity more rapidly that ( X I - ' .  
In order to form a kernel of Cauchy type, we apply the transformation s + -s to 

reflection coefficients b ( x ) .  They possess the basic properties as follows: 

(c> Ib (41 1. 

equation (1.1). By property (b), the integral term may then be written as 
m 

ei'(s-x)A(x, -s)q5(-s) ds 

1 m 

m e i ' ( s - x )  +g(x, -s))d*(s) ds. (1.2) 

Separating the dominant part from this integral (Muskhelishvili 1953, p 114), equation 
(1.1) may be expressed as 

where B(x)  denotes lb(x)l for simplicity, and 

is called the dominant equation, carresponding to the integral equation (1.1). 

2. Solution of the dominant equation 

Define the holomorphic function @ ( z )  by the Cauchy integral 

where do represents the solution of the dominant equation ( l S ) ,  and 2 is the complex 
variable with x as its real part. By the Plemelj formulae for the limiting value of a 
Cauchy integral, the dominant equation may be expressed as 

@ + ( x )  - @ - ( x )  -B(x)@?(x) = f ( x ) .  (2.2) 

(Re@)+-(l+B)(Re@)-=Ref (2 0 3) 

(Im@)+-(l-B)(Im@)-=Imf. (2.4) 

To write the real and imaginary parts of equation (2.2) separately, we have 

and 
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Let us introduce two holomorphic functions U ( z )  and V ( z )  such that 

Hence, equations (2.3) and (2.4) become 

and 

(!e)+-(-) I m @  =-, Imf 
v - v+ (2.7) 

The solutions of equations (2.5), called the fundamental functions, may be 
expressed as (Muskhelishvili 1953, pp 86-91) 

By the Plemelj formulae, the limiting values of 

~ + ( x )  = JiGo exp(ieu(x)), 

(2.8) 

(2.9) 

U ( z )  and V(r)  may be expressed as 

where the phase angles eu and OV are defined as the real functions: 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

Since B(x)  is an even function of x ,  equations (2.12) and (2.13) indicate that both & ( x )  
and e&) are odd functions of x ,  which implies that &(O) = &(O) = 0. 

Now we are able to formulate the non-homogeneous Hilbert problem (2.2) in terms 
of the fundamental functions. Note that the contour is a straight line extending to 
infinity. Thus, by equations (2.6) and (2.7), the solution of the non-homogeneous 
Hilbert problem (2.2) may be established as (Muskhelishvili 1953, pp 92-4) 

(2.14) Ref(s)+i-Imf(s)) V(Z ) +C(U(x)+iV(z) )  
V+(S) 

where Cis  the constant of integration. By the Plemelj formulae and expressions (2.10) 
and (2.11), the limiting values of @(z) on the real axis can readily be obtained. This 
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(2.15) 

3. Asymptotic expansions of phase angles 

The phase angles and OV, as given in expressions (2.12) and (2.13), depend upon the 
functional form of B(x), and cannot in general be integrated analytically. Therefore 
approximate expressions for the phase angles, if obtainable, will drastically reduce the 
computing time for 4(x). Figures 1 and 2 show variations of the phase angles for two 
illustrative cases: 

B(x) =SJ.rrexp(-x2), (3.1) 

B(x) =$&tanh a[sech(x +a)+sech(x -a ) ]  with a = 2. (3.2) 

All of these curves exhibit monotonic decreases for large x, so that some sort of 
asymptotic expansions may be attainable. By the property that B(x)  is an even 
function, the integrals in expressions (2.12) and (2.13) may be expressed as 

(3.3) 
m 

where P indicates the principal value. For large x, B(x) << 1; we consider the integrand 
on the right-hand side of equation (3.3) is negligibly small for v a x ,  and expand 

.OL 

8 ’ 18 

Figure 1. Phase angles for B = & exp(-x2). 
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Figure 2. Phase angles for B = gJ?r tanh 2[sech(x + 2) +sech(x - 2)]. 

(x ' -  v2)-' by the binomial theorem. Thus, the phase angles may be approximated by 

jOm v2" ln(l+B(v)) dv, 
l N  e&)-; C ~ - ( * " + l )  

S , ( x ) - i  f x - ( ~ ~ + ' )  lom v2" In (l-B(v)) dv, 

n = O  

n=O 

(3.4) 

(3.5) 

where N denotes the optimum degree of polynomial. The larger value of N does not 
necessarily yield the better result. In figures 3 and 4 the percentage errors, defined as 
)eapprOX/eexact- 11 X 100, are plotted on logarithmic scales against x .  Note that in these 

L e 
I; 

X X 

- 
Figure 3. Percentage errors of phase angles for B =9rexp( -x2) .  
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X 

Figure 4. Percentage errors of phase angles for B = gi tanh 2[sech(x +2)  +sech(x - 2)]. 

figures, discontinuity of the curves indicates change of the sign of error. Taking 
expression (3.2) as an example, of the four curves N = 10 yields the best result if a 
fractional error of 10-7'5 is allowed. 

4. Solution of complete equation 

The integral equation (1.1) may be solved by the method of successive approximations, 
starting with q50, given in equation (2.15), as the first approximation. For this purpose, 
we rewrite equation (1.3) in the form 

(4.2) 

where n > 0. Since equation (4.1) resembles, in form, equation (lS), it can be solved by 
using expression (2.15) withfreplaced by F,,-l. Thus, what remains to be verified is that 
c#,, must be a Cauchy sequence. 

Let us define the difference 

By expression (2.15), it is easy to verify 
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Im D, ( x )  = I Im(K*(x, S ) D , - ~ ( S ) )  ds 
2(1-B(x)) -m 

m 

Im(K*(s, r)Dfl-l(r)) dr. 

(4.5) 

Equations (4.4) and (4.5) indicate that convergence of the successive approximations is 
entirely irrelevant to the form of f ( x ) .  

Suppose that the function g(x, s), related to K(x,  s) by expression (1.4), satisfies the 
relation 

K*(x, s )F(s)  ds = v (x )F(x ) ,  

where F(x)  denotes an arbitrary function vanishing at infinity, and / v (x ) (  is less than 
unity for all x .  Thus, by relation (4.6), equation (4.4) becomes 

Similarly, equation (4.5) becomes 

We shall investigate from equations (4.7) and (4.8) whether it is true that 

IRe Dfl(x)l c IRe(v(x)Dfl-l(x))l 

IIm Dfl(x)I < IIm(v(x)Dfl-1(x))I. 

and 

If so, then for each E > 0 there exists an N such that 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

and thus the approximation scheme is convergent. We are going to discuss this problem 
separately in two different cases: one when the approximations fluctuate about the 
exact value, and the other when the approximations monotonically approach the exact 
value. 

4.1. Approximations fluctuating about exact value 

In this case we consider Re D,(x) Re D,-l(x) < O  and Im Q ( x )  Im D,-l(x) <O. If we 
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combine equation (4.7) and relation (4.9), after re-arranging we obtain 

(1 +B(x))’/’ sin(6u(x>-BU(s>> Re(v(s)D,-lb)) ds < tT. 
Re(v(x)D,-l(xN I -- s - x  (1 +B(s))’/’ 

Similarly, by equation (4.8) and relation (4.10), we have 

(4.11) 

4.2. Approximations monotonically approach exact value 

In this case we consider Re D,(x) Re D,-’(x) > 0 and Im Dn(x) Im D,-‘(x) > 0. If we 
combine equation (4.7) and relation (4.9), after re,-arranging we obtain 

(l+B(X))”’ sin(8u(x>-@ubJ R e ( v b ) ~ n - l ( ~ ) )  ds <tT 
Re(v(x)D,-l(x)) I -m x - s  (1 + B ( S p  

Similarly, by equation (4.8) and relation (4. lo), we have 

(4.14) 

Relations (4.11) and (4.12) or relations (4.13) and (4.14) must be satisfied in order to 
reach convergence. As shown in figures 1 and 2 for two typical examples, values of the 
phase angles are usually small. Thus, the left-hand sides of relations (4.11) to (4.14) are 
normally expected to be less than the order of unity, and some may even be negative. It 
is obvious that the right-hand sides of relations (4.11) and (4.12) are either equal or 
greater than T, while the right-hand side of relation (4.13) is greater than 77. The only 
one that may cause problems is relation (4.14). 

5. Conclusions 

A class of singular integral equation arising from the study of the inverse scattering 
problem has been investigated. The exact solution of the dominant equation was 
obtained, which serves as the first approximation for the solution of the complete 
integral equation. The asymptotic expansions of the phase angles appearing in the 
solution were also worked out in order to reduce significantly the computing time for 
the solution. The method of successive approximations was then proposed to solve the 
complete integral equation, and its convergence was discussed. 
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